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Abstract
The dynamics of two-level systems in time-dependent backgrounds is under
consideration. We present some new exact solutions in special backgrounds
decaying in time. On the other hand, following ideas of Feynman et al, we
discuss in detail the possibility of reducing the quantum dynamics to a classical
Hamiltonian system. This, in particular, opens the possibility of directly
applying powerful methods of classical mechanics (e.g. KAM methods) to
study the quantum system. Following such an approach, we draw conclusions
of relevance for ‘quantum chaos’ when the external background is periodic or
quasi-periodic in time.

PACS numbers: 03.65.Pm, 11.10.−z, 03.65.Sq

1. Introduction

Models of quantum two-level systems in time-dependent backgrounds are widely used in
different physical problems, with applications ranging from condensed matter physics to
quantum optics, particularly in the semiclassical theory of the laser [1]. They may, for
instance, represent the behaviour of a (frozen in space) spin 1/2 in a time-dependent magnetic
field. In such a case, the corresponding Schrödinger equation can be treated as the reduction
of the Pauli equation to the 0 + 1-dimensional case. It takes the form (for simplicity we adopt
h̄ = 1)

i∂t� = H(t)� (1.1)

where � = �(t) =
(

ψ1(t)

ψ2(t)

)
, with the quantum Hamiltonian H(t) given by

H(t) = −1

2
�B(t) · �σ = −1

2

(
Bz(t) Bx(t) − iBy(t)

Bx(t) + iBy(t) −Bz(t)

)
(1.2)

�σ = (σx, σy, σz) being the Pauli matrices and �B(t) = (Bx(t), By(t), Bz(t)).
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Equation (1.1) and its solutions have been widely studied. Our contribution in this paper
is threefold: we present a formulation of (1.1) in terms of classical Hamiltonian systems in
section 2, and in section 3 we present several new exact solutions for (1.1) in time-dependent
backgrounds which are switched off at the time infinity. These new exact solutions can
be useful in solving scattering-like problems. Finally, in section 4 we further develop the
classical Hamiltonian formulation of section 2 to discuss how qualitative methods of analysis
of classical Hamiltonian systems, such as the KAM method, can be used to shed some light on
properties related to ‘quantum chaos’ of two-level systems under periodic or quasi-periodic
time-dependent interactions [6]. Section 4 has left several open problems which, together with
the applications of section 3, will be left to further publications. In sections 3 and 4 we will
consider the special case

Bx(t) = −2ε By(t) = 0 Bz(t) = −2f (t) (1.3)

where ε is a constant and f (possibly after addition of a suitable constant) decays in time. The
Schrödinger equation (1.1) then reads i ˙ψ1,2 = ±f (t)ψ1,2 + εψ2,1. One of the basic facts we
use in section 3 is that the Schrödinger equation above may be shown to be equivalent to the
pair of independent second-order equations

ψ̈1,2 + (±iḟ + f 2 + ε2)ψ1,2 = 0. (1.4)

The particular Schrödinger equation for (1.3) describes two-level systems with unperturbed
energy levels ±ε (f ≡ 0) subject to an external time-dependent interaction f (t) inducing a
transition between the unperturbed eigenstates. Alternatively, it describes a spin 1/2 subject
to a constant magnetic field −2ε in direction ‘x’ and a time-dependent magnetic field 2f (t)
in direction ‘z’ produced, for instance, by a linearly (in direction ‘z’) polarized plane wave
field propagating in direction ‘x’. This system has been analysed by many authors in various
approximations. For historical references, see [9, 11, 12].

2. Classical Hamiltonian formulation for two-level systems

It is known that a classical description for spinning systems is usually related to the limit
S → ∞, h̄ → 0 (with h̄S = 1), where S is the spin value. Thus, there is a common belief that
a spin-1/2 system is a purely quantum object. The possibility of a pseudo-classical description
of such a system does not contradict that fact [17–21]. However, as first remarked by Feynman
et al [5], there is a correspondence between equation (1.1) and a classical Hamiltonian system,
and solutions of this mechanical system can be used to obtain solutions of (1.1). Moreover,
this allows us to directly apply non-perturbative methods of classical Hamiltonian systems,
such as the KAM methods, to the analysis of our time-dependent two-level systems. In section
4 we will discuss the significance of this fact to properties of two-level system in extremal (i.e.
in weak or strong coupling regime) conditions, drawing conclusions of relevance for ‘quantum
chaos’ when the field is periodic or quasi-periodic.

As mentioned, the possibility to formulate (1.1) in terms of a classical Hamiltonian system
has its roots in the work of Feynman et al [5], who introduced an approach which is instrumental
in the semiclassical theory of the laser [1]. Consider the Schrödinger equation (1.1)
and let

ρ(t) := |�(t)〉〈�(t)| =
(

ψ1(t)

ψ2(t)

)
(ψ∗

1 (t) ψ∗
2 (t)) =

(|ψ1|2 ψ1ψ∗
2

ψ2ψ∗
1 |ψ2|2

)
(2.1)

denote the density matrix. Then ρ satisfies the equation iρ̇ = [H(t), ρ]. Writing

ρ(t) = 1

2
(Q0 1I + �Q · �σ) = 1

2

(
Q0 + Q3 Q1 − iQ2

Q1 + iQ2 Q0 − Q3

)
(2.2)
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we have, by comparison of (2.1) and (2.2):

Q0 = |ψ1|2 + |ψ2|2 = Tr ρ = 1 Q1 = ψ1ψ∗
2 + ψ2ψ∗

1

Q2 = i(ψ1ψ∗
2 − ψ2ψ∗

1 ) Q3 = |ψ1|2 − |ψ2|2
The equation of motion iρ̇ = [H(t), ρ] yields [1, 5]

�̇Q := d

dt
�Q = − �� ∧ �Q �� ≡ (Bx(t), By(t), Bz(t)) (2.3)

and the condition ρ2 = ρ, which expresses that ρ is a pure state, yields

Q2
1 + Q2

2 + Q2
3 = �Q2 = Q2

0 = 1. (2.4)

Henceforth the overdot denotes a derivative with respect to time and ∧ denotes the vector
product.

Equations (2.3) and (2.4) determine the wavefunction completely in that ψ1 and ψ2 are
two complex numbers, and the phase of � is irrelevant. So three numbers — i.e. the vector
�Q—suffice. They are the basis of a simple geometric picture of quantum spin-1/2

(or two-level) systems: the unit vector �Q(t) precesses around the vector ��(t) just like a
classical gyromagnet precesses in a magnetic field [1, 5].

This observation suggests that (2.3) and (2.4) are associated with a classical Hamiltonian
system. Let us further develop this idea. Let us consider the unit sphere S2 with the usual
angular coordinates 0 � θ � π , 0 � ϕ < 2π , and let

�S = (Sx, Sy, Sz) = (sin θ cos ϕ, sin θ sin ϕ, cos θ) (2.5)

define the coordinates of a unit vector on S2. Introducing

p = cos θ q = ϕ (2.6)

as canonically conjugate variables, we may write

Sx =
√

1 − p2 cos q Sy =
√

1 − p2 sin q and Sz = p (2.7)

with the usual Poisson brackets

{Sx, Sy} = ∂Sx

∂q

∂Sy

∂p
− ∂Sx

∂p

∂Sy

∂q
= p = Sz (2.8)

plus cyclic permutations. From (2.5), of course, (Sx)2 + (Sy)2 + (Sz)
2 = 1.

Let us now define in S2 the classical Hamiltonian

H (1)(t) := − �B(t) · �S . (2.9)

This describes the interaction of a classical gyromagnet with an extremal time-dependent
magnetic field �B(t). By (2.9) and (2.7) we may write

H (1)(t) = −[Bx(t) cos q + By(t) sin q]
√

1 − p2 − Bz(t)p. (2.10)

From (2.9) and (2.8) one sees immediately

�̇S = { �S , H (1)} = − �B(t) ∧ �S . (2.11)

Equation (2.11) leads to the following picture: under the time evolution defined by H (1) the
unit vector �S (t) simply precesses around the magnetic field vector �B(t).

The important remark is that equations (2.3) with the parametrization
�Q = (sin θ cos ϕ, sin θ sin ϕ, cos θ) (2.12)

can be written in classical Hamiltonian form

q̇ = {
q, H (1)

} = ∂H (1)

∂p
ṗ = {

p, H (1)
} = −∂H (1)

∂q
(2.13)
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with q = ϕ, 0 � ϕ < 2π and p = cos θ , 0 � θ � π and H (1) the classical Hamiltonian
(2.10). This is immediate by comparing (2.11) with (2.3) and the parametrizations (2.5) and
(2.12).

In section 4 we shall also deal with another equivalent Hamiltonian, by the classical
canonical transformation q1 = −p = − cos θ , p1 = q = ϕ, with 0 � θ � π and 0 � ϕ � 2π .
We again write q1 = q and p1 = p, so as to keep the notation simple, and put

H (2)(t) = −[Bx(t) cos p + By(t) sin p]
√

1 − q2 + Bz(t)q. (2.14)

The spin variables (2.7) become

S (2)
x =

√
1 − q2 cos p S (2)

y =
√

1 − q2 sin p and S (2)
z = −q. (2.15)

Since H (2) = − �B(t) · �S (2), equation (2.11) reads now

�̇S (2) = { �S (2), H (2)} = − �B(t) ∧ �S (2) (2.16)

again with
(
S (2)

x

)2
+

(
S (2)

y

)2
+

(
S (2)

z

)2 = 1. With the parametrizations p = ϕ and q =
−cos θ , 0 � ϕ < 2π and 0 � θ � π , equation (2.15) becomes (as (2.5)) the
usual angular representation of the unit vector �S (2) on the unit sphere: �S (2) =
(sin θ cos ϕ, sin θ sin ϕ, cos θ).

In spite of being conceptually enlightening as discussed above, the connection between
the quantum equations (2.3) and the classical Hamiltonian system of (2.13) does not seem
to have been applied to some of the most exciting recent developments associated with the
Hamiltonian (1.2) for spin-1/2 systems in external periodic and quasi-periodic fields [6], both
in weak coupling [7] and strong coupling [8, 9]. This will be done in section 4. There we
show that the geometric approach provides very interesting insights into several aspects of
‘quantum chaos’ associated with two-level systems [6].

What can we say if the external field is not periodic or quasi-periodic? In this case some
exact solutions may be found, and in section 3 we show how the geometric picture helps to
find them, having as a basis the solution for constant field. More precisely, we consider the
special case (1.3) where ε is a constant and f (possibly after addition of a suitable constant)
decays in time.

2.1. Remarks on the semiclassical limit of spin systems

The theory of one spin (of spin quantum number S ) or, alternatively, a N = 2S + 1-level
system, interacting with an external time-dependent magnetic (or electric) field has always
been the object of intense study in quantum optics and in the statistical mechanics of quantum
spin systems.

In the classical limit, S → ∞, h̄ → 0 with h̄S = 1 the spin operators �S = (Sx, Sy, Sz)

satisfying the su(2) commutation relations [Sx, Sy] = ih̄Sz, plus cyclic permutations, converge
[2, 3] to the classical canonically conjugate variables of a gyromagnet. More precisely

Sx

S
→ Sx := sin θ cos ϕ

Sy

S
→ Sy := sin θ sin ϕ

Sz

S
→ Sz := cos θ (2.17)

with 0 < θ < π , 0 � ϕ < 2π , the usual angles on the unit sphere.
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Consider now this spin in an extremal time-dependent magnetic field �B(t). The
corresponding Hamiltonian

H( �S, t) = − �B(t) · �S (2.18)

satisfies, by (2.17)

H( �S, t)

S
→ − �B(t) · �S ≡ H (1)(t) (2.19)

showing that the classical Hamiltonian H (1)(t) is relevant both for S → ∞ and S = 1/2.
Classical considerations play an important role in condensed matter physics, in particular

in the theory of magnetism. There they are even applied to the extreme quantum limit, namely,
spin 1/2, often with remarkably good results. In order to give just one striking example, the
quantum mechanical ground-state energy per spin, in the thermodynamic limit, computed by
linear spin-wave theory around the classical ground state3, is off the exact value by only 3%
[4]. The above features may be justified by the fact that (2.17) is also applicable to spin 1/2, as
we saw. This may be surprising, because in the spin-1/2 case the error committed by replacing
�S/S by the rhs of (2.17) is very large, but it may explain some of the striking successes of
classical considerations for spin S = 1/2 systems mentioned above.

3. Exact solutions

In section 4 we will learn how classical KAM methods can be used to shed some light on the
properties of some quantum systems, such as spin-1/2 or two-level systems under the action
of an external periodic or quasi-periodic field f . The situation where f is non-periodic or
non-quasi-periodic may be, in general, more subtle. A surprising fact, however, is that in some
situations exact solutions can be found. Besides being interesting for their own sake, they may
be of relevance for the study of physical properties of the quantum systems described, such as
the computation of asymptotic transition probabilities and its large-time corrections.

In the present section we are going to present some exact solutions of the equation (2.3)
or equivalently to equations (1.4). In this connection, one ought to remark that the first
componentψ1(t) in equations (1.4) is a solution of the stationary one-dimensional Schrödinger
equation ψ̈1 + V ψ1 = 0 with a complex potential V related to the function f by a differential
equation of the first order: V = (iḟ + f 2 + ε2). In this case, by the Schrödinger equation
iψ̇1,2 = ±f (l)ψ1,2 + εψ2,1, the second component ψ2(t) can be restored from ψ1 through

ψ2 = ε−1(i∂t − f (t))ψ1. (3.1)

Solutions of the one-dimensional Schrödinger equation are discussed in [16], whose
results and considerations can be used to find concrete functions f that admit exact solutions
of the equations (2.3) and the respective explicit solutions. Below we present two physically
interesting exact solutions of the equations under consideration. Convergent perturbative
solutions for periodic f can be found in [11, 12].

3.1. An auxiliary solution

One can find a solution of the equations (2.3) for f = const. The vector Ω, given in (2.3), is,
by (1.3)

Ω = −2(ε, 0, f ) = −2ω(sin 2γ, 0, cos 2γ )

ω =
√

ε2 + f 2 ε = ω sin 2γ f = ω cos 2γ. (3.2)
3 For the classical spin-wave theory in the ferromagnetic case, see Straumann [4].
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In the general case 0 � γ � 2π , but if we restrict ourselves to positive ε > 0, then 0 � γ �
π/2 . The general solution of the equations under consideration has the form

ψ1(t) = +p sin γ exp(iωt) + q cos γ exp(−iωt)

ψ2(t) = −p cos γ exp(iωt) + q sin γ exp(−iωt). (3.3)

Here p, q are two complex constants. Let us introduce two angles ϕ0 and ψ by the relations

pq∗ = |pq| exp (2iϕ0) ψ = ωt + ϕ0. (3.4)

Then we find

Q0 = R2 = |p|2 + |q|2 Q1 = (|q|2 − |p|2) sin 2γ − 2|pq| cos 2γ cos 2ψ

Q2 = 2|pq| sin 2ψ Q3 = (|q|2 − |p|2) cos 2γ + 2|pq| sin 2γ cos 2ψ

|ψ1|2 = |p|2 sin2 γ + |q|2 cos2 γ + |pq| sin 2γ cos 2ψ

|ψ2|2 = |p|2 cos2 γ + |q|2 sin2 γ − |pq| sin 2γ cos 2ψ. (3.5)

3.2. The first exact solution

The function f of the form

f = f0 tanh τ + f1 τ = t

T
(3.6)

admits an exact solution as will be demonstrated below. Here f0 and f1 are two arbitrary
real constants. It is obvious that limt→±∞ f (t) = f± = f1 ± f0. Thus, at large |t|, the
solution has to coincide with those obtained above for constant f±. Let us introduce a new
variable z,

z = 1
2 (1 + tanh τ ) 0 < z < 1 (3.7)

and dimensionless constants

a = Tf0 b = Tf1 E = εT ω± =
√

E2 + (a ± b)2. (3.8)

The points z = 1, 0 correspond to t = ±∞ respectively, and

d

dt
= 2

T
z(1 − z)

d

dz

d2

dt2
= 4

T 2

[
z2(1 − z)2 d2

dz2
+ z(1 − z)(1 − 2z)

d

dz

]
.

We search for a solution of the first equation in (1.4) of the form

ψ1(t) = zµ(1 − z)νF (z). (3.9)

Taking into account that f = 1
T

(2az + b − a) and ḟ = 4a
T 2 z(1 − z) we obtain the following

equation for the function F(z):

z2(1 − z)2 d2

dz2
F + z(1 − z)[1 + 2µ − 2(µ + ν + 1)z]

d

dz
F + -(z)F = 0 (3.10)

where

-(z) = µ2 +
ω2

−
4

+

(
ν2 +

ω2
+

4
− µ2 − ω2

−
4

)
z − (µ + ν + 1 + ia)(µ + ν − ia)z(1 − z).

Selecting 2µ = iω− and 2ν = iω+ we arrive at the hypergeometric equation for the function
F (see [22] equation (9.151)). Then the general solution for the function ψ1(t) has the form

ψ1(t) = c1ϕ(µ, ν; z) + c2ϕ(−µ, ν; z) (3.11)

where c1 and c2 are some complex constants and

ϕ(µ, ν; z) = (1 − z)νzµF (µ + ν + 1 + ia, µ + ν − ia; 1 + 2µ; z). (3.12)

Here F(α, β; γ ; z) is the hypergeometric function (see [22] equation (9.100)).
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Taking into account (3.7), we may write

z = e2τ

1 + e2τ
τ = t

T
. (3.13)

Thus, limt→−∞ z = 0. Besides,

F(α, β; γ ; z = 0) = 1. (3.14)

Then one can find the asymptote as t → −∞,

ψ1(t) ≈ c1eiω−τ + c2e−iω−τ . (3.15)

This matches with (3.3) if we set

c1 = p sin γ− c2 = q cos γ−. (3.16)

The angle γ − is defined from the relations T ε = E = ω− sin 2γ− and Tf− = ω− cos 2γ−.
Searching for another asymptote as t → ∞ (which corresponds to z → 1), one has to

take into account that z = 1 is the bifurcation point of F(α, β; γ ; z). Thus, to use the relation
(3.14) one has to make the transformation F(z) → F(1 − z). That can be done by using the
relation (9.131.2) of [22]. Then we get

ϕ(µ, ν; z) = ϕ̄(µ, ν; z) + ϕ̄(µ, −ν; z) (3.17)

where

ϕ̄(µ, ν; z) = 1(1 + 2µ)1(−2ν) zµ(1 − z)ν

1(1 + µ − ν + ia)1(µ − ν − ia)
.

It follows from (3.13) that limt→∞(1− z) = 0. Taking this into account we find the asymptote
(as t → ∞) from (3.17),

ϕ(µ, ν; z) ≈ 1(1 + 2µ)1(−2ν)eiω+τ

1(1 + µ − ν + ia)1(µ − ν − ia)
+

1(1 + 2µ)1(2ν)e−iω+τ

1(1 + µ + ν + ia)1(µ + ν − ia)
.

The corresponding asymptote for ψ1(t) reads

ψ1(t) ≈
[

1(1 + 2µ)c1

1(1 + µ + ν + ia)1(µ + ν − ia)
+

1(1 − 2µ)c2

1(1 − µ + ν + ia)1(−µ + ν − ia)

]
eiω+τ

+

[
1(1 + 2µ)c1

1(1 + µ − ν + ia)1(µ − ν − ia)
+

1(1 − 2µ)c2

1(1 − µ − ν + ia)1(−µ − ν − ia)

]
e−iω+τ .

They correspond to solutions (3.3) with the frequency ω+ in the final state, if c1,2 obey
(3.16). Thus, the scattering problem is solved completely without calculating the function
ψ2(t). However, the latter function can be recovered from the function ψ1(t) using the second
equation in (1.4) and the formulae (9.137) of [22] for the hypergeometric functions.

3.3. Second exact solution

The function f of the form

f = f0

cosh τ
τ = t

T
(3.18)

admits another exact solution. Here f0 is an arbitrary real constant. Since f → 0 at |t| → ∞,
the corresponding asymptotic at γ = π/4 has the form (3.3). Introducing the variable z,

z = 2

1 − i sinh τ
(3.19)
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we find

d

dt
= z

T

√
1 − z

d

dz

d2

dt2
= z2(1 − z)

T 2

d2

dz2
+

z

2T 2
(2 − 3z)

d

dz
.

We search for a solution of the first equation in (1.4) in the form (3.9) at µ = iεT and
2ν = −Tf0. Thus, we find

ψ1(t) = c1ϕ(µ, ν; z) + c2ϕ(−µ, ν; z)

ϕ(µ, ν; z) = (1 − z)νzµF
(
µ, 1

2 + 2ν − µ; 1 + 2µ; z
)
. (3.20)

As one can see, z → 0 as |t| → ∞. However, one has to be careful and consider
asymptotes at t → ∞ and t → −∞ separately. Indeed, it follows from (3.19) that
1 − z = (sinh τ − i)/(sinh τ + i), and

z|t→−∞ ≈ −4ieτ = exp
(
τ − i

π

2
+ ln 4

)

z|t→∞ ≈ 4ie−τ = exp
(
−τ + i

π

2
+ ln 4

)
. (3.21)

Let us put exp τ = tan ϕ

4 , 0 < ϕ < 2π and 1 − z = exp ϕ. Then, t → −∞ �⇒ ϕ → 0; t →
∞ �⇒ ϕ → 2π , and we have limt→−∞ arg(1 − z) = 0 and limt→∞ arg(1 − z) = 2π . Taking
this into account and remembering (3.14), (3.21), we get as t → −∞

ψ1(t) ≈ c1 exp(χ1) + c2 exp(−χ1) χ1 = iεt + π
2 εT + iεT ln 4. (3.22)

The corresponding asymptote as t → ∞ has the form

ψ1 (t) ≈ e−iπf0T [c1 exp(−χ2) + c2 exp(χ2)] χ2 = iεt + π
2 εT − iεT ln 4 (3.23)

which has a complete correspondence with (3.3). At t → ∞ we may observe an exchange of
the coefficients and an additional phase appears.

4. ‘Quantum chaos’ in two-level systems

The problem of ‘quantum chaos’ has attracted a lot of attention in recent times (see [6] and
references quoted therein). We will now focus on it from the point of view of the classical
Hamiltonian system provided by (2.13) for the Hamiltonian (2.14), describing the two-level
systems discussed above with periodic or quasi-periodic time-dependent interactions.

Let us consider the situation where

Bx(t) = 2f (t) By(t) = 0 Bz(t) = −2ε (4.1)

we get from (1.2) the quantum Hamiltonian

H (1)(t) = εσz − f (t)σx. (4.2)

This is the most usual form of the Hamiltonian of a time-dependent two-level system: ε is
the energy difference of the (unperturbed) levels in a two-level atomic system, and −f (t)σx

is the interaction with an external electromagnetic field in a two-level approximation [1]. By
(2.14), the corresponding classical Hamiltonian is

H1 = −2f (t)
√

1 − q2 cos p − 2εq. (4.3)

Rotation of π/2 around the y-axis leads from (4.2) to

H (2)(t) = εσx + f (t)σz (4.4)

which corresponds to

Bx(t) = −2ε By(t) = 0 Bz(t) = −2f (t) (4.5)
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in (1.2). The classical Hamiltonian (2.14) becomes

H2 = 2ε
√

1 − q2 cos p − 2f (t)q. (4.6)

In both cases, the situation where ε is ‘small’ is called the strong-coupling case [8, 9] and the
situation where f is ‘small’ is called the weak-coupling case. We will analyse both separately.
We will consider (4.6) for the strong-coupling regime and (4.3) for the weak-coupling regime.

We now consider f periodic with frequency ω:

f = f (ωt). (4.7)

We are led, by Howland’s method in classical mechanics (see [6] or [10], chapter 7.4), to
consider the autonomous Hamiltonians corresponding to (4.3) and (4.6). Roughly speaking,
this method allows a non-autonomous Hamiltonian H (q, p, ωt) to be transformed into an
autonomous Hamiltonian by treating ωt as a coordinate θ with a corresponding canonically
conjugate momentum I. The associated autonomous Hamiltonian is K(q, p, θ, I) =
H(q, p, θ) + ωI and one easily checks the equivalence of the Hamilton equations for both.

Let us denote by K1 and K2 the autonomous Hamiltonians corresponding to (4.3) and
(4.6), respectively. For (4.3) we get

K1 = H0
1 + εV1 where H0

1 = −2f (θ)
√

1 − q2 cos p + ωI and V1 = −2q (4.8)

defined on the Cartesian product phase space 51 × 52, where

51 = {(q, p); −1 � q � 1; 0 � p < 2π with 2π and 0 identified}
52 = {(θ, I ); 0 � θ < 2π with 2π and 0 identified; −∞ < I < ∞}.

Above, I is the variable canonically conjugate to the angle θ , with θ̇ = ∂K1
∂I

= ω. On the other
hand, for (4.6) we get

K2 = H0
2 + εV2 where H0

2 = −2f (θ)q + ωI and V2 = 2
√

1 − q2 cos p. (4.9)

Again, I is the variable canonically conjugate to the angle θ , with θ̇ = ∂K2
∂I

= ω.
The important observation now is that H0

2 is integrable. In fact, H0
2 and q are two

independent constants of motion in involution. K2 is, however, not integrable and for ε ‘small’
K2 is, by (4.9), a small perturbation about an integrable Hamiltonian. Hence, KAM methods
are applicable [6] to the analysis of the Hamiltonian system associated with K2 and to the
corresponding quantum spin-1/2 or two-level system. Before we discuss the consequences of
this fact below let us look at the situation for the weak-coupling regime.

For weak coupling it is more natural to write ε ≡ ω0 and f ≡ ε̃ f̃ for ε̃ ‘small’. Equations
(4.2) and (4.4) become H̃ (1) = ω0σz − ε̃ f̃ (t)σx and H̃ (2)(t) = ω0σx + ε̃ f̃ (t)σz, respectively.
The classical autonomous Hamiltonians K1 and K2 become

K̃1 = H̃0
1 + ε̃ Ṽ1 where H̃0

1 = −2ω0q + ωI and Ṽ1 = −2f̃ (θ)
√

1 − q2 cos p

(4.10)

and

K̃2 = H̃0
2 + ε̃ Ṽ2 where H̃0

2 = 2ω0

√
1 − q2 cos p + ωI and Ṽ2 = −2f̃ (θ)q. (4.11)

Now, H̃0
1 is integrable, since q and I or q and H̃0

1 are independent constants of the motion
in involution. K̃1, however, is not integrable, and again, by (4.10), is a small perturbation
about an integrable Hamiltonian. Therefore, KAM methods are again applicable. Note that
in (4.10), with q = Sz = I1 and I = I2, one has H̃0

1 = H̃0
1(I1, I2) which is the standard form

of integrable H̃0
1.

Several remarks already follow from this description. FirstlyK2 and K̃1 are non-integrable
even in the periodic case, which lends further insight into the nontrivial character of the



10878 V G Bagrov et al

(quantum) perturbation theory developed in [11, 12]. Secondly, the complete equivalence of
the classical dynamics described by (4.9) or (4.10) to the quantum evolution throws further
light onto properties of the quantum system, as we now discuss briefly.

In the periodic case (4.7), K2 and K̃1 (given by (4.9) and (4.10), respectively) are
Hamiltonians of a system of two degrees of freedom. They are thus expected to exhibit
an Aubry–Mather transition [6], at a certain critical εc, which may correspond to the first
avoided crossing. The ingenious method of [13], which combines the KAM transformation
with a specific treatment of resonances and pushes the convergence radius of the classical
perturbation expansion up to |ε| = εc (or |ε̃| = εc) may, if applicable to the present classical
model, be translated exactly to the quantum case, with interesting implications for a modified
Rayleigh–Schrödinger perturbation theory for the Floquet eigenvalues of the quantum system.

As a final interesting insight provided by the classical description, consider the case of
quasi-periodic f (t) = f (ω1t, ω2t) with two incommensurate frequencies [6, 9]. In cases
(4.9) and (4.10) we are led to three-degrees-of-freedom Hamiltonians

K2 = H0
2 + εV2 where H0

2 = −2f (�θ)q + �ω · �I and V2 = 2
√

1 − q2 cos p (4.12)

and

K̃1 = H̃0
1 + ε̃Ṽ1 where H̃0

1 = −2ω0q + �ω · �I and Ṽ1 = −2f̃ (�θ)
√

1 − q2 cos p (4.13)

respectively, with �θ := (θ1, θ2), �I := (I1, I2), �ω := (ω1, ω2). It has, in general, quite different
critical properties from the two-degrees-of-freedom case [14]!. This may be a clue to the
nature of the differences between the periodic and the quasi-periodic cases. Although the
quasi-energy spectra are dense pure point in both cases [6, 15], there are basic differences in
the nature of the perturbative series (without secular terms [9, 11, 12]) in the coupling constant
ε: in contrast to the periodic case, in the quasi-periodic case the series is not, for reasons
explained in [9], expected to define an analytic function in any circle |ε| � ε0 (for ε0 however
small) for any values of the frequencies and coefficients of the Fourier expansion of f (which
are supposed to be O(1) with respect to ε).

5. Some final remarks

For certain Hamiltonians which are at most quadratic in coordinates and momenta obeying the
Heisenberg–Weyl algebra (flat phase space), there exist different explicit expressions for the
basic quantum mechanical quantities in terms of classical solutions [23]. As an example, we
mention the well-known expression of the transition amplitude via the van-Vleck determinant
[24].

In the case of compact phase space considered in this paper, there are two semiclassical
approaches: the WKB theory for spin, due to van Hemmen and Süto′′ [25], and the path
integral formalism (see [26], chapter 23 and references given there), but the connection with
classical dynamics is not established for any spin quantum number, but only in the classical
limit h̄ → 0, S → ∞ with h̄S = 1.

The phase space path integral for spin has also been employed, notably in [27], which uses
the Villain approximation. In this context, but along different lines, we have shown that the
classical Hamiltonian (2.10) (or (2.14)) is relevant to both the classical and extreme quantum
(spin 1/2) limits of the Hamiltonian of a quantum spin in an external magnetic field, one of
whose components is a time-dependent function f .



Aspects of two-level systems under external time-dependent fields 10879

Acknowledgments

JCAB and WFW are partially supported by CNPq. DMG is partially supported by CNPq and
FAPESP.

References

[1] Nussenzveig H M 1973 Introduction to Quantum Optics (New York: Gordon and Breach)
[2] Fawcett R J B and Bracken A J 1991 J. Phys. A: Math. Gen. 24 2743
[3] Lieb E H 1973 Commun. Math. Phys. 31 327
[4] Anderson P W 1952 Phys. Rev. 86 694

Straumann N 1987 Klassiche Mechanik (Berlin: Springer)
[5] Feynman R P, Vernon F L Jr and Hellwarth R W 1957 J. Appl. Phys. 28 49
[6] Jauslin H R 1993 Stability and Chaos in Classical and Quantum Hamiltonian Systems (II Granada Lectures in

Computational Physics) ed P L Garrido and J Marro (Singapore: World Scientific) pp 107–72
[7] Bleher P M, Jauslin H R and Lebowitz J L 1992 J. Stat. Phys. 68 271
[8] Wreszinski W F and Casmeridis S 1998 J. Stat. Phys. 90 1061
[9] Barata J C A 2000 Rev. Math. Phys. 12 25

[10] Cycon H L, Froese R G, Kirsch W and Simon B 1987 Schrödinger Operators (Berlin: Springer)
[11] Barata J C A and Wreszinski W F 2000 Phys. Rev. Lett. 84 2112
[12] Barata J C A 2001 Ann. H. Poincaré 2 963–1005
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